Spatiotemporal Properties of the Action Potential Propagation in the Mouse Visual Cortical Slice Analyzed by Calcium Imaging
نویسندگان
چکیده
The calcium ion (Ca(2+)) is an important messenger for signal transduction, and the intracellular Ca(2+) concentration ([Ca(2+)](i)) changes in response to an excitation of the cell. To reveal the spatiotemporal properties of the propagation of an excitatory signal with action potentials in the primary visual cortical circuit, we conducted a Ca(2+) imaging study on slices of the mouse visual cortex. Electrical stimulation of layer 4 evoked [Ca(2+)](i) transients around the stimulus electrode. Subsequently, the high [Ca(2+)](i) region mainly propagated perpendicular to the cortical layer (vertical propagation), with horizontal propagation being restricted. When the excitatory synaptic transmission was blocked, only weak and concentric [Ca(2+)](i) transients were observed. When the action potential was blocked, the [Ca(2+)](i) transients disappeared almost completely. These results suggested that the action potential contributed to the induction of the [Ca(2+)](i) transients, and that excitatory synaptic connections were involved in the propagation of the high [Ca(2+)](i) region in the primary visual cortical circuit. To elucidate the involvement of inhibitory synaptic connections in signal propagation in the primary visual cortex, the GABA(A) receptor inhibitor bicuculline was applied. In this case, the evoked signal propagated from layer 4 to the entire field of view, and the prolonged [Ca(2+)](i) transients were observed compared with the control condition. Our results suggest that excitatory neurons are widely connected to each other over the entire primary visual cortex with recurrent synapses, and inhibitory neurons play a fundamental role in the organization of functional sub-networks by restricting the propagation of excitation signals.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملLaminar circuit organization and response modulation in mouse visual cortex
The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar...
متن کاملNeurobiology of Disease Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex
What regulates the spread of activity through cortical circuits? We present here data indicating a pivotal role for a vetoing inhibition restraining modules of pyramidal neurons. We combined fast calcium imaging of network activity with whole-cell recordings to examine epileptiform propagation in mouse neocortical slices. Epileptiform activity was induced by washing Mg 2 ions out of the slice. ...
متن کاملInnovative Methodology Combined Voltage and Calcium Epifluorescence Imaging In Vitro and In Vivo Reveals Subthreshold and Suprathreshold Dynamics of Mouse Barrel Cortex
Berger T, Borgdorff A, Crochet S, Neubauer FB, Lefort S, Fauvet B, Ferezou I, Carleton A, Lüscher H-R, Petersen CC. Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol 97: 3751–3762, 2007. First published March 14, 2007; doi:10.1152/jn.01178.2006. Cortical dynamics can be imaged at high...
متن کامل